 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal
0 L2 C* q' n# ZTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then ' V" S" J, X' W) ?& ~4 [
b/ F, ]5 X6 y! L1 J$ fa + b = t
, x$ \5 _6 d$ K% P(a + b)(a - b) = t(a - b)
D Q& S" [) d7 M/ j% ^a^2 - b^2 = ta - tb
1 C/ z: y' L. E2 g7 [: S7 h8 Ja^2 - ta = b^2 - tb
2 L/ w; r' V9 q+ q! a! a" \- e: Ta^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/44 Y. S: a- x( ^. f
(a - t/2)^2 = (b - t/2)^2
% z3 w7 {( o( K8 ma - t/2 = b - t/2
, d% l+ `$ H' G+ G. da = b F2 N- v K* W6 U9 m
, b' n& L% J) K8 n* dSo all numbers are the same, and math is pointless. |
|