 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal 1 J- j: {6 G# B6 X7 p6 _ X! T5 n
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then ( [+ Y# t: }8 k0 D
/ |' y% J) w/ Y% Za + b = t/ J+ m& g; Q- {7 O, E" W: X
(a + b)(a - b) = t(a - b)/ Q+ [$ T2 ~& `" Z
a^2 - b^2 = ta - tb& \* q9 o- B% e& q
a^2 - ta = b^2 - tb) X9 N p! a0 B5 B+ x f
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
/ c, e6 E/ ]- F8 T. L( {* A(a - t/2)^2 = (b - t/2)^2
3 C+ m: X: v3 |; O* Sa - t/2 = b - t/27 Y3 g8 T, p/ n
a = b + @, p0 D% n- v3 V) w0 x
3 ?) h* [9 y- F/ k6 j' D
So all numbers are the same, and math is pointless. |
|