 鲜花( 19)  鸡蛋( 0)
|
Solution:
% L* D5 t' ?" C4 _6 v6 l0 _( ~+ T, U; t. C1 `1 c$ s+ S ?' e1 W
From: d{(a+bx)*C(x)}/dx =-k C(x) + s
2 j4 L1 A$ M V- fso:
" }) q h/ a' U6 r# ^9 h9 b( N" m$ t
* M$ J2 T8 z' s; m5 R( |' j+ YbC(x) + (a+bx) dC(x)/dx = -kC(x) +s
# f1 Q0 q- D* {8 }2 g3 bi.e.0 k* O) U2 K2 ]3 I4 n; Z
4 V4 U; \! h5 l3 w4 e3 a(a+bx) dC(x)/dx = -(k+b)C(x) +s. k% g5 n5 w7 _: I7 l8 N
" M: u. j Q: Y: W4 ]
0 q) W+ e: r8 A0 V- I
introduce a tranform: KC(x)+s =Y(x), where K=-(k+b) ' U, l3 @1 Q" h& l
which means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx" B- C* M7 e U! [
therefore:
7 q( { }: }& S* I" V; I: f2 s) d. p$ D# {
{(a+bx)/K} dY(x)/dx=Y(x)+ s) A! l+ M* j- T {
% J g) p0 R" ofrom here, we can get:
* h6 q8 ~' C) v _1 i& T
7 \- n O( @ I$ kdY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = K/b {(a+bx)}d(a+bx)& |, Y: `0 i/ C+ K, Y* x
1 ^' H0 l4 Y& ?0 ~, oso that: ln Y(x) =( K/b) ln(a+bx)
* E3 u0 X. n, ?- C
! _0 a' _1 N* fthis means: Y(x) = (a+bx)^(K/b)8 |+ ~% T+ j/ a2 L( ~
by using early transform, we can have:2 w2 r% q" x% c
; b6 f- z* n" w. F+ `-(k+b)C(x)+s = (a+bx)^(k/b+1)
, W6 h1 y/ x! k7 o' l# M# ?( U; P3 e" l1 o2 T8 ]# t+ Y( E0 x0 k) |
finally:
4 B5 Z% X) }7 _/ |' q/ @8 L, g
2 z1 }0 S4 V1 S7 S% E2 d7 tC(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|