All Numbers Are Equal 4 ~3 Q% o8 z( D: V$ P( I' oTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 8 Z) S8 `8 E. H; @# C6 ? # H; a9 ^+ L, O7 u9 Va + b = t/ J) g* s; c! s. c5 U
(a + b)(a - b) = t(a - b) 5 o t B2 Y+ ha^2 - b^2 = ta - tb 0 ]+ C3 h; p# Ma^2 - ta = b^2 - tb , o; V& C" h; r9 b* T; J+ _2 c1 aa^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4, n- o9 b. `) f8 v+ H1 |( D
(a - t/2)^2 = (b - t/2)^2+ Y S& k+ G" t' Q0 }; o
a - t/2 = b - t/2 ! e* q2 y3 }. {& R6 ]a = b & r8 F: N1 Z d( { @ " X! {& a: f) Y7 R3 aSo all numbers are the same, and math is pointless.