All Numbers Are Equal 5 c+ C3 _% \) J% L7 ]* ?Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then / m. [5 T. \. v3 D7 Z- G% V
7 q g7 Z6 k+ l2 u" O) oa + b = t5 t) _: B. m# Q0 }: F6 K2 E {0 d
(a + b)(a - b) = t(a - b) - H7 H: I. `% E9 u. E- J( _" Sa^2 - b^2 = ta - tb9 G3 }" Z8 A7 k4 v% b ~
a^2 - ta = b^2 - tb # Q5 m& _; [4 Z5 \8 A, Ja^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 % P: B: j8 H) w( P$ }7 i7 g(a - t/2)^2 = (b - t/2)^2 / x3 P* a3 M' S6 l6 [3 ha - t/2 = b - t/27 |8 N5 j9 K. V3 a
a = b ; O( s9 \; b1 c- o8 R) R! j
/ H* U/ s" r ZSo all numbers are the same, and math is pointless.