 鲜花( 0)  鸡蛋( 0)
|
Suppose Intr is annually compounded
- |$ n. Y/ o4 b3 C8 I0 v Month 0 Mon. 8 Mon. 12: {+ q1 t# I0 g) c, w
Cash Principal X -750 -950 . x& Q& N/ B8 e) a% C* x$ U0 c% y
Cash Intr (Should Pay) -X*9.5%*8/12 -(X-750)*9.5%*4/12 & h8 z8 ]( m( C+ A( y: C
PV at mon 0 X -[750+X*9.5%*8/12] -[950+(X-750)*9.5%*4/12]
) K9 c2 U" z7 _' a: }" j. k2 C /(1+7.75%*8/12) /(1+7.75%*12/12)
& A3 g. F$ z- c: g6 \9 x# y% R7 w6 ^/ U5 K# v( Y1 y
these 3 should add up to 0, i.e. NPV at month 0 is 0. F, e" [/ X4 M: {8 P$ \! O" y7 Z9 i
9 q$ y( @6 V- W% {6 }; @
Conclusion X = 1729.8
1 @2 a R. q+ I8 c1 k' X % t3 H. {* r$ z( m g! V6 c- Q
So, Initial borrowing was 1730 *(1+7.5%) 1859.5 approx. $1,860
7 p8 o C2 y9 X; R& n- @ |
|