All Numbers Are Equal 8 b. ~- C, k' |6 z! X3 G
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 0 k, h6 z8 N- ~5 {. ?: _
' K z: s: M2 w; Q5 x. L# J
a + b = t8 x; K8 ~* t) {4 t
(a + b)(a - b) = t(a - b) $ U: O6 M$ d; ba^2 - b^2 = ta - tb5 a8 [3 b9 R! Q5 n0 |* V2 }$ N
a^2 - ta = b^2 - tb N5 |% R) I3 F) R1 oa^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4) ~ l0 B1 V9 h! X- Z
(a - t/2)^2 = (b - t/2)^2 . b' Z3 h4 v& M' `3 p1 ^+ I* e$ _a - t/2 = b - t/2 % f9 |4 c, ^2 N+ C U. }a = b % A) l9 q" ?& K
; b" L6 e* |2 k9 K7 W5 H k9 `& `) Y* |9 L
So all numbers are the same, and math is pointless.