 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal 8 i/ J3 n: e) m( d/ _- p: g" f
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then
+ l( u6 Y5 Y/ _6 N& r
/ W! w( R, c7 T* v0 | O- ma + b = t" ~( {, B2 B! q j/ b& E9 E- P
(a + b)(a - b) = t(a - b)
' A/ L3 s! ?( z. {a^2 - b^2 = ta - tb6 K5 p- o, h! i( ]1 c: p) L
a^2 - ta = b^2 - tb; k% v% \# Y2 I
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
/ x1 l' J1 X) }" A/ Y& I(a - t/2)^2 = (b - t/2)^2" I2 x3 v* s& t% }
a - t/2 = b - t/2
3 f$ R `+ @; C w3 E* O$ i6 b2 @! Ra = b
; u- V( s" a A
8 r7 m6 y1 W1 ?9 r8 w: C7 BSo all numbers are the same, and math is pointless. |
|