All Numbers Are Equal ; o- A. v( Q- Q$ W; iTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 5 |# M+ L9 n* Y! E$ {" J5 ~ K/ f k. p
a + b = t # M& t% p9 G) K& @7 i(a + b)(a - b) = t(a - b)9 E$ B0 v; k3 z9 |
a^2 - b^2 = ta - tb( ?( @! h( g' |4 T; r7 V% C2 `
a^2 - ta = b^2 - tb 6 B1 y! l1 ~7 y, s# q# Ja^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 ~% R: r! L9 f0 |% a) q(a - t/2)^2 = (b - t/2)^2* A3 Q! H2 w5 A
a - t/2 = b - t/2 3 j, u/ S! H5 Qa = b 6 N) |. p9 u* l8 N% G9 u8 p% l 6 h! e; F- N' H1 Q. oSo all numbers are the same, and math is pointless.