 鲜花( 0)  鸡蛋( 0)
|
据加通社报导,加拿大研究人员日前开发出一种乳腺癌诊断的新技术,该技术预测患者康复率的准确度高达80%。此项电脑化工具的目标是帮助医生按照个别患者的肿瘤状况,采取更加有效的治疗方式。
9 C! a3 [& w1 z) G( Q5 Y# n& c4 c" o; i
此项名为动态网络模式(Dynamic Network Modularity)或DyNeMo的新技术,是用来分析癌细胞中的蛋白质及其他成分如何互相形成网络,而细胞网络的形成状况则预示着肿瘤将如何发展。
! |$ ~+ {) G; B( ^/ Y0 B1 ]# V) _& Z5 D
多伦多西乃山医院(Mount Sinai Hospital)Samuel Lunenfeld Research Institute的高级研究人员Jeff Wrana表示,研究人员发现,蛋白质实际形成的网络并不是独立个体,而是相互关联,与人类的社交网络类似。 : C# S) a' }2 d% V H- x4 F9 o
: H x' A0 O" r0 I) [此项研究报告发表在最新的《自然生物科技》(Nature Biotechnology)杂志上。研究人员对350名患有乳腺癌的妇女进行研究后发现,幸存者的肿瘤内的蛋白质网络组成,与死亡的患者不同。 , K% p" L, @& S& ~ H
( v. k$ |, H- y. M
该项技术的合作发明者之一,Dr. Wrana实验室的分子基因博士Ian Taylor表示,DyNeMo将为医生提供更多信息,以便他们确定女性乳腺癌患者的肿瘤大小、发展阶段、级别及其他特征。但他同时表示,该技术并不能够取代其他的诊断技术,但是可以起到互补的作用,从而使得医生的诊断更加精确。虽然全球对蛋白质网络的研究增多,研究人员预期今后乳腺癌诊断的精确性将进一步提高。
% I! f' y7 f, W9 \: Y3 U8 G7 K
+ W% z9 K4 F: VWrana表示,目前研究人员正在生物科技与制药领域寻找合作伙伴,希望能够将该技术商业化,并在5年内广泛应用于乳腺癌患者。
* w' x7 R: T. B, z% O3 _" k
. K+ m4 P& h+ C3 Y3 X* u研究人员同时还计划将该技术运用于其他类型的癌症,以查看是否能够预测患者对某种药物的反应。 " |) |' {9 q" T4 ^
6 T% a$ F* A+ ^ b8 z. h# c1 o哈佛医学院(Harvard Medical School)的基因学副教授Marc Vidal表示,在个人医学发展方面,多伦多的研究是重要的一步。 |
|