 鲜花( 19)  鸡蛋( 0)
|
Solution:2 x1 r1 A q- N! j
2 i& Z( \9 u9 U- ^% g; q
From: d{(a+bx)*C(x)}/dx =-k C(x) + s7 I4 [$ Y2 E. s4 a
so:
0 c# m2 A( g \( n3 J" c+ T; F0 O- x& t% M+ I, g
bC(x) + (a+bx) dC(x)/dx = -kC(x) +s& @8 f. j1 Y& I
i.e.
# T" J, t$ s- u" w4 j5 X+ z; z, x8 B( s
(a+bx) dC(x)/dx = -(k+b)C(x) +s
3 {: } {+ \1 U
8 P3 c, T1 f7 k& `4 h/ C* R& ?
) v; E' j5 |6 p) s" |introduce a tranform: KC(x)+s =Y(x), where K=-(k+b)
7 E. d& }% ^; m) p, E; U" fwhich means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx+ }( H! s, a! ~# R+ S; B7 F
therefore:+ K! \- e) r( P7 t- V
/ d3 a% q/ X7 `
{(a+bx)/K} dY(x)/dx=Y(x)
: L# m+ y. @2 U% [; G a8 H; C, Q3 ~& W0 S# {3 G5 h
from here, we can get:
( v$ |# n3 B# Y! E4 @/ \% a# x% c L; E" G
dY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = K/b {(a+bx)}d(a+bx)* z% P+ K! O$ t) X4 M
/ Z6 ]/ Q/ W3 V8 d' r. sso that: ln Y(x) =( K/b) ln(a+bx)
9 q; y* s& o) I& ~3 e2 ?) c# V; M& \2 S6 S3 e2 y' J0 M# `
this means: Y(x) = (a+bx)^(K/b)
! @& I: Z7 Z7 c* C1 Z8 |9 y/ o- g2 Xby using early transform, we can have:: i0 U. o, ~) l# x) V; R
" y, |% O& W _' ?% K
-(k+b)C(x)+s = (a+bx)^(k/b+1)
2 u/ k$ F; z8 R0 B3 k7 [+ p/ Y" o: T4 v/ Y6 N
finally:
% x, u! g( P( i [/ P+ L! K) i- A: U! L0 l
C(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|